2208(a)

THE UNIVERSITY OF SYDNEY

<u>CHEMISTRY 1B - CHEM1102</u> SECOND SEMESTER EXAMINATION

CONFIDENTIAL

NOVEMBER 2012

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 16 and 24 are for rough working only.

OFFICIAL USE ONLY

Multiple	e choice	section
\backslash		Marks
Pages	Max	Gained
2-8	29	
Short ar	cwor co	oction

Short answer section
Marks

	Marks			
Page	Max	Gaine	d	Marker
9	4			
10	4			
11	5			
12	9			
13	4			
14	3			
15	6			
17	3			
18	6			
19	4			
20	7			
21	6			
22	4			
23	6			
Total	71			

 What is the pH of a 0.100 M solution of s The pK_a of acetic acid is 4.76. 	odium acetate?	Marks 4
	pH =	
What is the ratio of acetate ion to acetic a	cid in this solution?	
	Answer:	

CHEM1102	2012-N-3	2208(a
• Citric acid, C ₆ H ₈ O ₇ , has Explain, giving exact ve based buffer with pH 5.	s three pK_a values: $pK_{a1} = 3.13$, $pK_{a2} = 4.76$ and $pK_{a3} = 6.40$. olumes and concentrations, how to make 1.0 L of a citrate- .58.	Marks 4
		_
THE REMAINDER	OF THIS PAGE IS FOR ROUGH WORKING ONLY.	

Page Total:

•	The following three complex ions can all exhibit isomerism. Name the type of isomerism involved in each case and draw the structures of the isomeric pairs. ox = oxalate = $C_2O_4^{2-}$	Marks 9
	$\left[CrCl_2(NH_3)_4\right]^+$	
	$[Fe(ox)_3]^{3-}$	
	$[C_{2}(NH) (OH)]^{3+}$	-
•	Give the systematic name of each of the following compounds.	3
C	en = ethylenediamine = 1,2-diaminoethane = $NH_2CH_2CH_2NH_2$ So[PtF_6]	-
ľ		

• What are the structural differences between graphite and diamond and how do these differences impact on their physical properties? Mention at least three physical properties.	Marks 3
Describe the periodic trends of either atomic radius or of ionisation energy. Explain the trend in the property selected.	1

Marks • Order either one of the two following sets of oxides in terms of increasing acidity. 2 Explain the reasons for your order. 2. HClO₂, HClO, HClO₄, HClO₃. 1. HBrO₄, H₃AsO₄, H₂SeO₄ • A binary alloy has a face-centered cubic structure with atoms of element A in the 1 faces and atoms of element B at the corners. What is the formula of the alloy? Explain your reasoning.

Answer:

• How does the interplay of ΔH and ΔS affect the spontaneity of the phase change

between solid and liquid water?

• What is the solubility of scandium hydroxide, Sc(OH)₃, $(K_{sp} = 2 \times 10^{-30})$ in water? Give your answer in g per 100 mL.

Marks 2

4

• Consider the reaction $A(g) + B(g) + C(g) \rightarrow D(g)$ for which the following data were obtained at 25 °C.

Experiment	Initial [A] (mol L^{-1})	Initial [B] $(mol L^{-1})$	Initial [C] (mol L^{-1})	Initial rate (mol $L^{-1} s^{-1}$)
1	0.0500	0.0500	0.1000	$6.25 imes 10^{-3}$
2	0.1000	0.0500	0.1000	$1.25 imes 10^{-2}$
3	0.1000	0.1000	0.1000	$5.00 imes 10^{-2}$
4	0.0500	0.0500	0.2000	$6.25 imes 10^{-3}$

Write the rate law and calculate the value of the rate constant.

	2012 11 10		2200(u)
Complete the following table	e.		Marks 6
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)	
	1. NaBH ₄ 2. $\operatorname{H}^{\oplus}/\operatorname{H}_2\operatorname{O}$	OH	
	$\operatorname{Cr_2O_7}^{2\Theta}/\operatorname{H}^{\oplus}$		
	dilute H ₂ SO ₄	OH	
	1. NaOH 2. CH ₃ Br	OCH ₃	
ОН	concentrated H ₂ SO ₄		
O II		0	

ОH

Cl

• Draw the structure of the organic product(s) formed when each of the following compounds is treated with 4 M sodium hydroxide. The first two reactions proceed at room temperature; the last one requires heating.

4

• Consider compound (**P**), whose structure is shown below.

• Devise a synthesis of the following compound from the starting material indicated. Note that more than one step will be required. Indicate all necessary reagents and the constitutional formulas of any intermediate compounds.

3

Marks • Devise a synthesis of the following compounds from the starting materials indicated. 6 Note that more than one step will be required. Indicate all necessary reagents and the constitutional formulas of any intermediate compounds. OH 0 ,OH 0 Cl MeO MeO

• Complete the mechanism for the following reaction. Give the structure of the carbocation intermediate and indicate (using curly arrows) all the bonding changes that occur. (f) = (f)

•	 When HBr reacts with 1-pentene, three products, L, M and N, are formed. L and M are enantiomers, whilst L and N (and M and N) are constitutional isomers. Give the structures of these products and explain how they form? Discuss the relative amounts of each product, paying attention to the regioselectivity and stereoselectivity of the reaction. Hint: You need to discuss important aspects of the reaction mechanism, including the relative stabilities of any intermediates, but you do not need to give the full mechanism using curly arrows. 			
L	M N			

CHEM1102 - CHEMISTRY 1B

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$0 ^{\circ}\text{C} = 273 \text{K}$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions			Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10^{-3}	milli	m	10^{3}	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	Μ	
10^{-9}	nano	n	10 ⁹	giga	G	
10^{-12}	pico	р				

CHEM1102 - CHEMISTRY 1B

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\operatorname{Cu}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\mathrm{Cd}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cd}(\mathrm{s})$	-0.40
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
π^{2+1} $2 = \pi^{2+1}$	076
$Zn^{-}(aq) + 2e \rightarrow Zn(s)$	-0.76
$2H_{2}O + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	-0.76 -0.83
$2n^{-+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.76 -0.83 -0.89
$2n^{-+}(aq) + 2e^{-} \rightarrow 2n(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-0.76 -0.83 -0.89 -1.68
$2n^{-+}(aq) + 2e^{-} \rightarrow 2n(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	-0.76 -0.83 -0.89 -1.68 -2.09
$Zn^{-+}(aq) + 2e^{-} \rightarrow Zn(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-0.76 -0.83 -0.89 -1.68 -2.09 -2.36
$2n^{-+}(aq) + 2e^{-} \rightarrow 2n(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71
$2n^{-+}(aq) + 2e^{-} \rightarrow 2n(s)$ $2H_2O + 2e^{-} \rightarrow H_2(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$ $Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-0.76 -0.83 -0.89 -1.68 -2.09 -2.36 -2.71 -2.87

Useful formulas								
Quantum Chemistry	Electrochemistry							
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$							
$\lambda = h/mv$	Moles of $e^- = It/F$							
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$							
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$							
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$							
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$							
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$							
Acids and Bases	Gas Laws							
$pH = -log[H^+]$	PV = nRT							
$pK_{\rm w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$							
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$							
$pH = pK_a + \log\{[A^-] / [HA]\}$								
Radioactivity	Kinetics							
$t_{1/2} = \ln 2/\lambda$	$t_{l/2} = \ln 2/k$							
$A = \lambda N$	$k = A e^{-Ea/RT}$							
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$							
14 C age = 8033 ln(A_0/A_t) years	$\ln\frac{k_2}{1} = \frac{E_a}{1}\left(\frac{1}{1} - \frac{1}{1}\right)$							
	$k_1 R T_1 T_2$							
Colligative Properties & Solutions	$k_1 \qquad R T_1 \qquad T_2'$ Thermodynamics & Equilibrium							
Colligative Properties & Solutions $\Pi = cRT$	$k_{1} = R^{\circ}T_{1} = T_{2}^{\circ}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$k_{1} = R^{\circ}T_{1} = T_{2}^{\circ}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $c = kp$	$k_{1} = R^{\circ}T_{1} = T_{2}^{\circ}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $c = kp$ $\Delta T_{\text{f}} = K_{\text{f}}m$	$k_{1} = R^{\circ}T_{1} = T_{2}^{\circ}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{\text{univ}}S^{\circ} = R \ln K$							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $c = kp$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$	$k_{1} \qquad R T_{1} \qquad T_{2}^{\prime}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{\text{univ}}S^{\circ} = R \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $c = kp$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Miscellaneous	$k_{1} \qquad R T_{1} \qquad T_{2}'$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{\text{univ}}S^{\circ} = R \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$ Mathematics							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $c = kp$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Miscellaneous $A = -\log \frac{I}{I_0}$	$k_{1} = R^{-}T_{1} = T_{2}^{2}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{univ}S^{\circ} = R \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$ Mathematics If $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $c = kp$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Miscellaneous $A = -\log \frac{I}{I_0}$ $A = \varepsilon cl$	$k_{1} = R^{-}T_{1} = T_{2}^{2}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{univ}S^{\circ} = R \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$ Mathematics If $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $\ln x = 2.303 \log x$							
Colligative Properties & Solutions $\Pi = cRT$ $P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$ $c = kp$ $\Delta T_{\text{f}} = K_{\text{f}}m$ $\Delta T_{\text{b}} = K_{\text{b}}m$ Miscellaneous $A = -\log \frac{I}{I_0}$ $A = \varepsilon cl$ $E = -A - \frac{e^2}{I_0} N_A$	$k_{1} = R^{-}T_{1} = T_{2}^{2}$ Thermodynamics & Equilibrium $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta_{univ}S^{\circ} = R \ln K$ $K_{p} = K_{c} (RT)^{\Delta n}$ Mathematics If $ax^{2} + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $\ln x = 2.303 \log x$ Area of circle $= \pi r^{2}$							

CHEM1102 - CHEMISTRY 1B

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудкоден Н 1.008																	2 нешим Не 4.003
3	4 BERYLLIUM											5 BORON	6 CARBON	7 NITROGEN	8 oxygen	9 FLUORINE	10 NEON
Li	Be											В	С	Ν	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
	MAGNESIUM Mo											ALUMINIUM Al	SILICON	PHOSPHORUS	SULFUR		Argon Ar
22.99	24.31											26.98	28.09	30.97	32.07	35.45	39.95
19 potassium	20 CALCIUM	21 scandium	22 TITANIUM	23 vanadium	24 СНКОМІ ЦМ	25 manganese	26 IRON	27 cobalt	28 NICKEL	29 COPPER	30 zinc	31 gallium	32 germanium	33 Arsenic	34 selenium	35 bromine	36 KRYPTON
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RUBIDIUM Rh	STRONTIUM	VTTRIUM V	ZIRCONIUM Zr	NIOBIUM	MOLYBDENUM	тесниетии	RUTHENIUM R11	RHODIUM Rh	PALLADIUM Pd	SILVER A G		INDIUM	Sn	Sh	TELLURIUM	IODINE	XENON
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.40	114.82	118.69	121.75	127.60	126.90	131.30
55 CAESUM	56	57-71	72	73	74	75	76	77 IBIDUM	78 BLATINIM	79	80	81	82	83	84	85	86 BADON
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.59	204.37	207.2	208.98	[210.0]	[210.0]	[222.0]
87 FRANCIUM	88 RADIUM	89-103	104 RUTHERFORDI	105 DUBNIUM	106 SEABORGIUM	107 BOHRIUM	108 HASSIUM	109 MEITNERIUM	110 darmstadtium	111 ROENTGENIUM	112	м					
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						
[223.0]	[226.0]		[261]	[262]	[266]	[262]	[265]	[266]	[271]	[272]	[283]						
	5	7	58	59	60	61	62	63	64	4 6	55	66	67	68	69	70	71
LANTHAN	DID LANTE	IANUM C		PRASEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLE	NUM TER	BIUM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	LUTETIUM
8	139	a 1/	Le	F F 1/0.91	1 NU 144-24	FIII [1// 9]	511	EU 151.96		u I 25 159	8.93	Dy 162 50	ПО 164.93	ЕГ 167-26	I III 168 93	173 04	174 97

96 curium

Cm

[247.1]

89 actinium

Ac

[227.0]

ACTINOIDS

90 THORIUM

Th

232.04

91 protactinium

Pa

[231.0]

92 uranium

U

238.03

93 NEPTUNIUM

Np

[237.0]

94 plutonium

Pu

[239.1]

95 Americium

Am

[243.1]

97 BERKELLIUM

Bk

[247.1]

98 californium

Cf

[252.1]

99 EINSTEINIUM

Es

[252.1]

100 fermium

Fm

[257.1]

101 mendelevium

Md

[256.1]

102 NOBELIUM

No

[259.1]

103 LAWRENCIUM

Lr

[260.1]

PERIODIC TABLE OF THE ELEMENTS

2208(b)